8 research outputs found

    Discrete time sliding mode control of milling chatter

    No full text
    © Springer Nature Switzerland AG 2020. The technique of mitigating chatter phenomenon in an effective manner is an important issue from the viewpoint of superior quality machining process with quality production. In this paper, an innovative solution to control chatter vibration actively in the milling process is presented. The mathematical modelling associated with the milling technique is presented in the primary phase of the paper. In this paper, an innovative technique of discrete time sliding mode control (DSMC) is blended with Type 2 fuzzy logic system. Superior mitigation of chatter is the outcome of developed active controller. The Lyapunov scheme is implemented to validate the stability criteria of the proposed controller. The embedded nonlinearity in the cutting forces and damper friction are compensated in an effective manner by the utilization of Type-2 fuzzy technique. The vibration attenuation ability of DSMC-Type-2 fuzzy (DSMC-T2) is compared with the Discrete time PID (D-PID) and DSMC-Type-1 fuzzy (DSMC-T1) for validating the effectiveness of the controller. Finally, the numerical analysis is carried out to validate that DSMC-T2 is superior to D-PID and DSMC-T1 in the minimization of the milling chatter
    corecore